Automated Concept Map Extraction from Text

Martina Galletti^{1,2,*}, Inès Blin^{1,3,*}, Eleni Ilkou⁴

¹Sony Computer Science Laboratories - Paris, Paris, France

²Sapienza University of Rome, Rome, Italy

³Vrije Universiteit Amsterdam, Amsterdam, The Netherlands ⁴L3S Research Center, Leibniz University, Hannover, Germany

martina.galletti @sony.com, ines.blin@sony.com, ilkou@l3s.de

Context

Concept Map: semantic graph summary of concepts and their relations

Useful for: learning new information, active learning, memory retention

- Creating them manually is time-consuming
- Creating them automatically is limited and outdated

We propose two novel types of approaches:

- Neuro-symbolic pipeline
- LLM-based methods

An example of Concept Map george british monarch became abdicated announces edward viii was intent on marrying triggering wallis simpson lived a peripatetic existence after arose was not recognized by constitutional crisis church of england

Two novel approaches for automated concept map extraction from text Neuro-symbolic pipeline

- Innovative integration of these tools within a cohesive framework for concept map extraction
- First ones to propose the summarization step as a first step

LLM-based methods

Zero-shot and One-shot

- Zero-shot: task and output description
- One-shot: Zero-shot + one example

Experiments and Results

Experimental Setup

Datasets: WIKI [1] (main, hyperparameter search), BIOLOGY [2] (fine-tuning REBEL)

Metrics: METEOR, ROUGE-2

Baselines: from the literature

Our methods: pipeline (varying elements), LLM

State-of-the-art ROUGE-2: Precision (+165%), F1 (+59%)

Ours: METEOR > ROUGE-2 (semantic quality vs. exact overlap)

- All is better
- Struggles more with relation extraction
- LLM
- Decomposed is better
- State-of-the-art METEOR F1 (+48%), ROUGE-2 Recall (+4.7%)

	Method	METEO		R	RC	ROUGE-2	
		Pr	Re	F1	Pr	Re	F1
	Falke et al (2017)	19.6	19.0	19.2	17.0	10.7	12.9
	All	24.6	24.5	24.0	6.4	11.8	7.6
	No ranking	35.9	20.6	25.6	2.2	22.9	3.8
LLM	No summary	36.4	16.8	22.2	1.3	24.3	2.5
	Zero-shot	25.2	19.1	21.2	6.3	15.9	8.2
	One-shot	25.2	19.2	21.3	6.3	15.9	8.2
	Decomposed	38.4	23.3	28.5	3.9	24.3	6.0
					 .		

Results on WIKI TEST (precision, recall, F1). Bold is the highest across methods.