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Figure 1. Unified Opinions Concepts (UOC) Ontology Diagram

The Unified Opinion Concepts (UOC) ontology 
bridges the gap between the semantic representation 
of opinion across different formulations. It is a unified 
conceptualisation based on the facets of opinions 
studied extensively in NLP and semantic structures 
described through symbolic descriptions.
Key Contributions:

- UOC Ontology that improves on the existing 
opinion formulation in terms of expressivity 
and cross-compatibility. 

- Formulation of Unified Opinion Concepts 
Extraction (UOCE) as an NLP task grounded 
in rich UOC semantic representations.

- Manually annotated evaluation dataset with 
tailored evaluation metrics.

Problem def.  Given an input text 𝑇!, extract an  exhaustive set of opinions 𝑂! = {𝑜"", 𝑜"#…, 𝑜!$} , where each opinion 𝑂! where each opinion is represented 
by the  tuple: 𝑂! = {𝑎𝑡, 𝑎𝑐, 𝑡𝑒, 𝑠𝑒, 𝑠𝑝, 𝑠𝑖 ℎ𝑠, ℎ𝑒, 𝑞,r}!,$ , where: 
𝑎𝑡 : Aspect Term, 𝑠𝑖 : Sentiment Intensity, 𝑎𝑐 : Aspect Category, ℎ𝑠: Holder Span , 𝑡𝑒 : Target Entity, ℎ𝑒 :Holder Entity, 𝑠𝑒 : Sentiment Express, 𝑞 :Qualifier
𝑠𝑝 : Sentiment Polarity, r :Reason

Model DEF DFE EDF EFD FDE FED μ ± σ
Gemma2 27B 57.70 55.92 56.77 56.77 55.15 53.64 55.99 ± 1.44
Gemma2 9B 57.20 55.85 58.56 58.40 55.35 54.46 56.64 ± 1.68

GPT-4o 58.46 55.58 59.12 59.33 57.55 56.76 57.8 ± 1.46
GPT-4o-Mini 54.67 53.88 55.59 57.00 53.29 56.26 55.12 ± 1.42

Llama 3.1 70B 46.90 46.02 48.04 44.14 44.86 46.27 46.04 ± 1.4
Llama 3.1 8B 46.36 49.88 43.84 44.73 48.79 35.54 44.86 ± 5.11

Mistral 7B 48.00 48.52 49.09 48.46 49.61 50.30 49 ± 0.85
Mixtral 8x7B 49.63 50.57 51.84 51.26 49.60 50.98 50.65 ± 0.9

μ 52.36 52.03 52.86 52.51 51.78 50.53
± σ 5.17 3.80 5.53 6.19 4.24 6.97

Model jsonld man obo owf owx rdfx ttl μ ± σ
Gemma2 27B 57.36 56.54 57.59 55.49 57.96 55.35 58.76 57.01 ± 1.27
Gemma2 9B 54.66 54.75 54.12 43.68 54.18 44.48 54.77 51.52 ± 5.09

GPT-4o 57.71 56.41 57.47 57.65 56 57.45 58.13 57.26 ± 0.76
GPT-4o-Mini 55.26 54.38 52.71 53.94 54.31 53.72 53.74 54.01 ± 0.78

Llama 70B 51.39 50.32 52.2 51.66 49.41 51.26 50.91 51.02 ± 0.92
Llama 8B 49.59 50.91 49.39 49.04 49.42 50.38 49.31 49.72 ± 0.67

Mistral 7B 49.07 47.97 47.91 47.45 48.52 47.25 47.27 47.92 ± 0.68
Mixtral 8x7B 51.75 50.79 50.38 50.26 50.63 49.18 51.36 50.62 ± 0.83

μ 53.35 52.76 52.72 51.15 52.55 51.13 53.03
± σ 3.37 3.17 3.55 4.53 3.52 4.28 4.08

Natural Language Prompt (NLPrompt): It has the definitions of opinion 
concepts (D),  in-context examples (E) and format guidelines (F).

Ontology Prompt (OntoPrompt): The definitions of concepts (D) is provided 
as a serialized ontology  description rather instead of natural language.

TASK MODEL P R F1

A
ST
E

GEN-SCL-NAT 60.25 70.14 64.82
MVP 61.26 67.66 64.3
Ours (NLPrompt) 75.24 74.15 74.69
Ours (OntoPrompt) 75.87 73.67 74.75

A
C
O
S GEN-SCL-NAT 49.61 57.76 53.38

MVP 52.83 58.35 55.46
Ours (NLPrompt) 58.23 57.39 57.81
Ours (OntoPrompt) 58.35 56.67 57.49

U
O
C
E GEN-SCL-NAT 39.1 45.52 42.07

MVP 35.6 39.32 37.37
Ours (NLPrompt) 55.22 63.62 59.12
Ours (OntoPrompt) 53.9 62.1 57.71

Observation
The baseline methods for UOCE task outperform the state-of-the-art ASTE and ACOS tasks on evaluation dataset. It illustrate the challenges UOCE poses and the benefits to 
other opinion mining formulations.

Extracted 
Labels

OURS 
(NLPrompt)

OURS 
(OntoPrompt)

GEN-SCL-
NAT MVP

GOLD
LABELS

Aspect Term locations location N/A N/A N/A
Aspect 

Category
general general general general general

Target Entity place location location restaurant location
Sentiment 

Expression
one of the best one of the best best best one of the 

best
Sentiment 

Polarity
positive positive positive positive positive

Sentiment 
Intensity

strong strong × × strong

Holder Span N/A N/A × × N/A
Holder Entity author author × × author

Qualifier you could stay at 
in Boston

N/A × × stay at in 
Boston

Reason N/A N/A × × N/A
Example: Automatic Opinion Extraction for “By far one of the best locations you could stay at in Boston.”

Our formulation of Fine-Grained Opinion Representations builds on the rich literature in opinion mining. 
Core tasks such as Aspect Sentiment Triple Extraction (ASTE) (Wu et al., 2020), Structured Sentiment 
Analysis (Barnes et al., 2022), and Aspect-Category-Opinion-Sentiment (ACOS) (Cai et al., 2021) 
extraction have shaped progress in NLP. In addition, our approach is motivated by the MARL ontology 
(Westerski et al., 2011) and the opinion facets outlined by Liu (2017).
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Baseline Methods for UOCE

Unified Opinion Concepts Extraction (UOCE) Task

Table 1: F1 Score for UOCE using NLPrompts Table 2: F1 Score for UOCE using OntoPrompts

Table 3: Comparison with GEN-SCL-NAT (Peper and Wand, 2022), and MVP (Gou et al., 2023)
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